High-speed high-security signatures

Peter Schwabe

National Taiwan University

Joint work with Daniel J. Bernstein, Niels Duif, Tanja Lange, and Bo-Yin Yang

September 29, 2011
CHES 2011, Nara, Japan

Summary

- Elliptic-curve signature scheme and corresponding software
- Based on arithmetic on twisted Edwards curves

Summary

－Elliptic－curve signature scheme and corresponding software
－Based on arithmetic on twisted Edwards curves

Security features

－ 128 bits of security
－Timing－attack resistant implementation
－Foolproof session keys
－Hash－function－collision resilience

Summary

－Elliptic－curve signature scheme and corresponding software
－Based on arithmetic on twisted Edwards curves

Security features

－ 128 bits of security
－Timing－attack resistant implementation
－Foolproof session keys
－Hash－function－collision resilience

Speed features

－Fast signing： 87548 cycles on Intel Nehalem／Westmere
－Fast verification： 273364 cycles
－Even faster batch verification：＜ 134000 cycles／signature
－Fast key generation： 93288 cycles
－Short signatures（ 64 bytes），short public keys（32 bytes）

Recall Schnorr signatures

- Variant of ElGamal Signatures
- Many more variants (DSA, ECDSA, KCDSA, ...)
- Uses finite group $G=\langle B\rangle$, with $|G|=\ell$
- Uses hash-function $H: G \times \mathbb{Z} \rightarrow\left\{0, \ldots, 2^{t}-1\right\}$
- Originally: $G \leq \mathbb{F}_{q}^{*}$, here: consider elliptic-curve group

Recall Schnorr signatures

- Variant of ElGamal Signatures
- Many more variants (DSA, ECDSA, KCDSA, ...)
- Uses finite group $G=\langle B\rangle$, with $|G|=\ell$
- Uses hash-function $H: G \times \mathbb{Z} \rightarrow\left\{0, \ldots, 2^{t}-1\right\}$
- Originally: $G \leq \mathbb{F}_{q}^{*}$, here: consider elliptic-curve group
- Private key: $a \in\{1, \ldots, \ell\}$, public key: $A=-a B$

Recall Schnorr signatures

- Variant of ElGamal Signatures
- Many more variants (DSA, ECDSA, KCDSA, ...)
- Uses finite group $G=\langle B\rangle$, with $|G|=\ell$
- Uses hash-function $H: G \times \mathbb{Z} \rightarrow\left\{0, \ldots, 2^{t}-1\right\}$
- Originally: $G \leq \mathbb{F}_{q}^{*}$, here: consider elliptic-curve group
- Private key: $a \in\{1, \ldots, \ell\}$, public key: $A=-a B$
- Sign: Generate secret random $r \in\{1, \ldots, \ell\}$, compute signature $(H(R, M), S)$ on M with

$$
\begin{aligned}
R & =r B \\
S & =(r+H(R, M) a) \bmod \ell
\end{aligned}
$$

Recall Schnorr signatures

- Variant of ElGamal Signatures
- Many more variants (DSA, ECDSA, KCDSA, ...)
- Uses finite group $G=\langle B\rangle$, with $|G|=\ell$
- Uses hash-function $H: G \times \mathbb{Z} \rightarrow\left\{0, \ldots, 2^{t}-1\right\}$
- Originally: $G \leq \mathbb{F}_{q}^{*}$, here: consider elliptic-curve group
- Private key: $a \in\{1, \ldots, \ell\}$, public key: $A=-a B$
- Sign: Generate secret random $r \in\{1, \ldots, \ell\}$, compute signature $(H(R, M), S)$ on M with

$$
\begin{aligned}
R & =r B \\
S & =(r+H(R, M) a) \bmod \ell
\end{aligned}
$$

- Verifier computes $\bar{R}=S B+H(R, M) A$ and checks that

$$
H(\bar{R}, M)=H(R, M)
$$

EdDSA and Ed25519 parameters

EdDSA
Ed25519-SHA-512

- $b=256$

EdDSA and Ed25519 parameters

EdDSA

－Integer $b \geq 10$
－Prime power $q \equiv 1(\bmod 4)$
－$(b-1)$－bit encoding of elements of \mathbb{F}_{q}

Ed25519－SHA－512

－$b=256$
－$q=2^{255}-19$（prime）
－little－endian encoding of $\left\{0, \ldots, 2^{255}-20\right\}$

EdDSA and Ed25519 parameters

EdDSA

－Integer $b \geq 10$
－Prime power $q \equiv 1(\bmod 4)$
－$(b-1)$－bit encoding of elements of \mathbb{F}_{q}
－Hash function H with $2 b$－bit output

Ed25519－SHA－512

－$b=256$
－$q=2^{255}-19$（prime）
－little－endian encoding of $\left\{0, \ldots, 2^{255}-20\right\}$
－$H=$ SHA－512

EdDSA and Ed25519 parameters

EdDSA

- Integer $b \geq 10$
- Prime power $q \equiv 1(\bmod 4)$
- $(b-1)$-bit encoding of elements of \mathbb{F}_{q}
- Hash function H with $2 b$-bit output
- Non-square $d \in \mathbb{F}_{q}$
- $B \in\{(x, y) \in$
$\left.\mathbb{F}_{q} \times \mathbb{F}_{q},-x^{2}+y^{2}=1+d x^{2} y^{2}\right\}$ (twisted Edwards curve E)
- prime $\ell \in\left(2^{b-4}, 2^{b-3}\right)$ with $\ell B=(0,1)$

Ed25519-SHA-512

- $b=256$
- $q=2^{255}-19$ (prime)
- little-endian encoding of $\left\{0, \ldots, 2^{255}-20\right\}$
- $H=$ SHA-512
- $d=-121665 / 121666$
- $B=(x, 4 / 5)$, with x "even"
- ℓ a 253 -bit prime

EdDSA and Ed25519 parameters

EdDSA

- Integer $b \geq 10$
- Prime power $q \equiv 1(\bmod 4)$
- ($b-1$)-bit encoding of elements of \mathbb{F}_{q}
- Hash function H with $2 b$-bit output
- Non-square $d \in \mathbb{F}_{q}$
- $B \in\{(x, y) \in$ $\left.\mathbb{F}_{q} \times \mathbb{F}_{q},-x^{2}+y^{2}=1+d x^{2} y^{2}\right\}$ (twisted Edwards curve E)
- prime $\ell \in\left(2^{b-4}, 2^{b-3}\right)$ with $\ell B=(0,1)$

Ed25519-SHA-512

- $b=256$
- $q=2^{255}-19$ (prime)
- little-endian encoding of $\left\{0, \ldots, 2^{255}-20\right\}$
- $H=$ SHA-512
- $d=-121665 / 121666$
- $B=(x, 4 / 5)$, with x "even"
- ℓ a 253 -bit prime

Ed25519 curve is birationally equivalent to the Curve25519 curve.

EdDSA keys

重豪学
－Secret key：b－bit string k
－Compute $H(k)=\left(h_{0}, \ldots, h_{2 b-1}\right)$

EdDSA keys

－Secret key：b－bit string k
－Compute $H(k)=\left(h_{0}, \ldots, h_{2 b-1}\right)$
－Derive integer $a=2^{b-2}+\sum_{3 \leq i \leq b-3} 2^{i} h_{i}$
－Note that a is a multiple of 8

EdDSA keys

－Secret key：b－bit string k
－Compute $H(k)=\left(h_{0}, \ldots, h_{2 b-1}\right)$
－Derive integer $a=2^{b-2}+\sum_{3 \leq i \leq b-3} 2^{i} h_{i}$
－Note that a is a multiple of 8
－Compute $A=a B$
－Public key：Encoding \underline{A} of $A=\left(x_{A}, y_{A}\right)$ as y_{A} and one（parity）bit of x_{A}（needs b bits）

EdDSA keys

－Secret key：b－bit string k
－Compute $H(k)=\left(h_{0}, \ldots, h_{2 b-1}\right)$
－Derive integer $a=2^{b-2}+\sum_{3 \leq i \leq b-3} 2^{i} h_{i}$
－Note that a is a multiple of 8
－Compute $A=a B$
－Public key：Encoding \underline{A} of $A=\left(x_{A}, y_{A}\right)$ as y_{A} and one（parity）bit of x_{A}（needs b bits）
－Compute A from $\underline{A}: x_{A}= \pm \sqrt{\left(y_{A}^{2}-1\right) /\left(d y_{A}^{2}+1\right)}$

EdDSA signatures

Signing
－Message M determines $r=H\left(h_{b}, \ldots, h_{2 b-1}, M\right) \in\left\{0, \ldots, 2^{2 b}-1\right\}$
－Define $R=r B$
－Define $S=(r+H(\underline{R}, \underline{A}, M) a) \bmod \ell$
－Signature：$(\underline{R}, \underline{S})$ ，with \underline{S} the b－bit little－endian encoding of S
－$(\underline{R}, \underline{S})$ has $2 b$ bits（3 known to be zero）

EdDSA signatures

Signing
－Message M determines $r=H\left(h_{b}, \ldots, h_{2 b-1}, M\right) \in\left\{0, \ldots, 2^{2 b}-1\right\}$
－Define $R=r B$
－Define $S=(r+H(\underline{R}, \underline{A}, M) a) \bmod \ell$
－Signature：$(\underline{R}, \underline{S})$ ，with \underline{S} the b－bit little－endian encoding of S
－$(\underline{R}, \underline{S})$ has $2 b$ bits（ 3 known to be zero）

Verification

－Verifier parses A from \underline{A} and R from \underline{R}
－Computes $H(\underline{R}, \underline{A}, M)$
－Checks group equation

$$
8 S B=8 R+8 H(\underline{R}, \underline{A}, M) A
$$

－Rejects if parsing fails or equation does not hold

Collision resilience

- ECDSA uses $H(M)$
- Collisions in H allow existential forgery

Collision resilience

- ECDSA uses $H(M)$
- Collisions in H allow existential forgery
- Schnorr signatures and EdDSA include \underline{R} in the hash
- Schnorr: $H(\underline{R}, M)$
- EdDSA: $H(\underline{R}, \underline{A}, M)$
- Signatures are hash-function-collision resilient

Collision resilience

－ECDSA uses $H(M)$
－Collisions in H allow existential forgery
－Schnorr signatures and EdDSA include \underline{R} in the hash
－Schnorr：$H(\underline{R}, M)$
－EdDSA：$H(\underline{R}, \underline{A}, M)$
－Signatures are hash－function－collision resilient
－Including \underline{A} alleviates concerns about attacks against multiple keys

Foolproof session keys

－Each message needs a different，hard－to－predict r（＂session key＂）
－Just knowing a few bits of r for many signatures allows to recover a
－Usual approach（e．g．，Schnorr signatures）：Choose random r for each message

Foolproof session keys

－Each message needs a different，hard－to－predict r（＂session key＂）
－Just knowing a few bits of r for many signatures allows to recover a
－Usual approach（e．g．，Schnorr signatures）：Choose random r for each message
－Potential problems：Bad random－number generators， off－by－one（－byte）bugs

Foolproof session keys

－Each message needs a different，hard－to－predict r（＂session key＂）
－Just knowing a few bits of r for many signatures allows to recover a
－Usual approach（e．g．，Schnorr signatures）：Choose random r for each message
－Potential problems：Bad random－number generators， off－by－one（－byte）bugs
－Even worse：No random－number generator：Sony＇s PS3 security disaster

Foolproof session keys

－Each message needs a different，hard－to－predict r（＂session key＂）
－Just knowing a few bits of r for many signatures allows to recover a
－Usual approach（e．g．，Schnorr signatures）：Choose random r for each message
－Potential problems：Bad random－number generators， off－by－one（－byte）bugs
－Even worse：No random－number generator：Sony＇s PS3 security disaster
－EdDSA uses deterministic，pseudo－random session keys $H\left(h_{b}, \ldots, h_{2 b-1}, M\right)$

Foolproof session keys

- Each message needs a different, hard-to-predict r ("session key")
- Just knowing a few bits of r for many signatures allows to recover a
- Usual approach (e.g., Schnorr signatures): Choose random r for each message
- Potential problems: Bad random-number generators, off-by-one(-byte) bugs
- Even worse: No random-number generator: Sony's PS3 security disaster
- EdDSA uses deterministic, pseudo-random session keys $H\left(h_{b}, \ldots, h_{2 b-1}, M\right)$
- Same security as random r under standard PRF assumptions
- Does not consume per-message randomness
- Better for testing (deterministic output)

Fast arithmetic in $\mathbb{F}_{2^{255}-19}$

Radix 2^{64}

- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 4 64-bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Fast arithmetic in $\mathbb{F}_{2^{255}-19}$

Radix 2^{64}

- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 464 -bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 2^{51}

- Instead break into 564 -bit integers, use radix 2^{51}
- Schoolbook multiplication now 25 64-bit integer multiplications
- Partial results have <128 bits, adding upper part is add, not adc
- Easy to merge multiplication with reduction (multiplies by 19)
- Better performance on Westmere/Nehalem, worse on 65 nm Core 2 and AMD processors

Fast signing

- Main computational task: Compute $R=r B$

Fast signing

－Main computational task：Compute $R=r B$
－First compute $r \bmod \ell$ ，write it as $r_{0}+16 r_{1}+\cdots+16{ }^{63} r_{63}$ ，with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

Fast signing

－Main computational task：Compute $R=r B$
－First compute $r \bmod \ell$ ，write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$ ，with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

－Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$ ，in a lookup table at compile time

Fast signing

－Main computational task：Compute $R=r B$
－First compute $r \bmod \ell$ ，write it as $r_{0}+16 r_{1}+\cdots+16{ }^{63} r_{63}$ ，with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

－Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$ ，in a lookup table at compile time
－Compute $R=\sum_{i=0}^{63} 16^{i} r_{i} B$

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

- Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$, in a lookup table at compile time
- Compute $R=\sum_{i=0}^{63} 16^{i} r_{i} B$
- 64 table lookups, 64 conditional point negations, 63 point additions

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

- Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$, in a lookup table at compile time
- Compute $R=\sum_{i=0}^{63} 16^{i} r_{i} B$
- 64 table lookups, 64 conditional point negations, 63 point additions
- Wait, table lookups?

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

- Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$, in a lookup table at compile time
- Compute $R=\sum_{i=0}^{63} 16^{i} r_{i} B$
- 64 table lookups, 64 conditional point negations, 63 point additions
- Wait, table lookups?
- In each lookup load all 8 relevant entries from the table, use arithmetic to obtain the desired one

Fast signing

- Main computational task: Compute $R=r B$
- First compute $r \bmod \ell$, write it as $r_{0}+16 r_{1}+\cdots+16^{63} r_{63}$, with

$$
r_{i} \in\{-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7\}
$$

- Precompute $16^{i}\left|r_{i}\right| B$ for $i=0, \ldots, 63$ and $\left|r_{i}\right| \in\{1, \ldots, 8\}$, in a lookup table at compile time
- Compute $R=\sum_{i=0}^{63} 16^{i} r_{i} B$
- 64 table lookups, 64 conditional point negations, 63 point additions
- Wait, table lookups?
- In each lookup load all 8 relevant entries from the table, use arithmetic to obtain the desired one
- Signing takes 87548 cycles on an Intel Westmere CPU
- Key generation takes about 6000 cycles more (read from /dev/urandom)

Fast verification

－First part：point decompression，compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

－Looks like a square root and an inversion is required

Fast verification

－First part：point decompression，compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

－Looks like a square root and an inversion is required
－As $q \equiv 5(\bmod 8)$ for each square α we have $\alpha^{2}=\beta^{4}$ ，with $\beta=\alpha^{(q+3) / 8}$
－Standard：Compute β ，conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$

Fast verification

－First part：point decompression，compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

－Looks like a square root and an inversion is required
－As $q \equiv 5(\bmod 8)$ for each square α we have $\alpha^{2}=\beta^{4}$ ，with $\beta=\alpha^{(q+3) / 8}$
－Standard：Compute β ，conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$
－Decompression has $\alpha=u / v$ ，merge square root with inversion：

$$
\beta=(u / v)^{(q+3) / 8}
$$

Fast verification

－First part：point decompression，compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

－Looks like a square root and an inversion is required
－As $q \equiv 5(\bmod 8)$ for each square α we have $\alpha^{2}=\beta^{4}$ ，with $\beta=\alpha^{(q+3) / 8}$
－Standard：Compute β ，conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$
－Decompression has $\alpha=u / v$ ，merge square root with inversion：

$$
\begin{aligned}
\beta & =(u / v)^{(q+3) / 8}=u^{(q+3) / 8} v^{q-1-(q+3) / 8} \\
& =u^{(q+3) / 8} v^{(7 q-11) / 8}=u v^{3}\left(u v^{7}\right)^{(q-5) / 8}
\end{aligned}
$$

Fast verification

- First part: point decompression, compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

- Looks like a square root and an inversion is required
- As $q \equiv 5(\bmod 8)$ for each square α we have $\alpha^{2}=\beta^{4}$, with $\beta=\alpha^{(q+3) / 8}$
- Standard: Compute β, conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$
- Decompression has $\alpha=u / v$, merge square root with inversion:

$$
\begin{aligned}
\beta & =(u / v)^{(q+3) / 8}=u^{(q+3) / 8} v^{q-1-(q+3) / 8} \\
& =u^{(q+3) / 8} v^{(7 q-11) / 8}=u v^{3}\left(u v^{7}\right)^{(q-5) / 8}
\end{aligned}
$$

- Second part: computation of $S B-H(\underline{R}, \underline{A}, M) A$
- Double-scalar multiplication using signed sliding windows
- Different window sizes for B (compile time) and A (run time)

Fast verification

－First part：point decompression，compute x coordinate x_{R} of R as

$$
x_{R}= \pm \sqrt{\left(y_{R}^{2}-1\right) /\left(d y_{R}^{2}+1\right)}
$$

－Looks like a square root and an inversion is required
－As $q \equiv 5(\bmod 8)$ for each square α we have $\alpha^{2}=\beta^{4}$ ，with $\beta=\alpha^{(q+3) / 8}$
－Standard：Compute β ，conditionally multiply by $\sqrt{-1}$ if $\beta^{2}=-\alpha$
－Decompression has $\alpha=u / v$ ，merge square root with inversion：

$$
\begin{aligned}
\beta & =(u / v)^{(q+3) / 8}=u^{(q+3) / 8} v^{q-1-(q+3) / 8} \\
& =u^{(q+3) / 8} v^{(7 q-11) / 8}=u v^{3}\left(u v^{7}\right)^{(q-5) / 8}
\end{aligned}
$$

－Second part：computation of $S B-H(\underline{R}, \underline{A}, M) A$
－Double－scalar multiplication using signed sliding windows
－Different window sizes for B（compile time）and A（run time）
－Verification takes 273364 cycles

Faster batch verification

－Verify a batch of $\left(M_{i}, A_{i}, R_{i}, S_{i}\right)$ ，where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}

Faster batch verification

－Verify a batch of $\left(M_{i}, A_{i}, R_{i}, S_{i}\right)$ ，where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
－Choose independent uniform random 128－bit integers z_{i}
－Compute $H_{i}=H\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$

Faster batch verification

－Verify a batch of $\left(M_{i}, A_{i}, R_{i}, S_{i}\right)$ ，where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
－Choose independent uniform random 128－bit integers z_{i}
－Compute $H_{i}=H\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
－Verify the equation

$$
\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B+\sum_{i} z_{i} R_{i}+\sum_{i}\left(z_{i} H_{i} \bmod \ell\right) A_{i}=0
$$

Faster batch verification

－Verify a batch of（ $M_{i}, A_{i}, R_{i}, S_{i}$ ），where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
－Choose independent uniform random 128－bit integers z_{i}
－Compute $H_{i}=H\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
－Verify the equation

$$
\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B+\sum_{i} z_{i} R_{i}+\sum_{i}\left(z_{i} H_{i} \bmod \ell\right) A_{i}=0
$$

－Use Bos－Coster algorithm for multi－scalar multiplication

Faster batch verification

－Verify a batch of（ $M_{i}, A_{i}, R_{i}, S_{i}$ ），where $\left(R_{i}, S_{i}\right)$ is the alleged signature of M_{i} under key A_{i}
－Choose independent uniform random 128－bit integers z_{i}
－Compute $H_{i}=H\left(\underline{R_{i}}, \underline{A_{i}}, M_{i}\right)$
－Verify the equation

$$
\left(-\sum_{i} z_{i} S_{i} \bmod \ell\right) B+\sum_{i} z_{i} R_{i}+\sum_{i}\left(z_{i} H_{i} \bmod \ell\right) A_{i}=0
$$

－Use Bos－Coster algorithm for multi－scalar multiplication
－Verifying a batch of 64 signatures takes 8.55 million cycles（i．e．， <134000 cycles／signature）

The Bos－Coster algorithm

－Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$

The Bos-Coster algorithm

- Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
- Idea: Assume $s_{1}>s_{2}>\cdots>s_{n}$. Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
- Each step requires the two largest scalars, one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits

The Bos-Coster algorithm

- Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
- Idea: Assume $s_{1}>s_{2}>\cdots>s_{n}$. Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
- Each step requires the two largest scalars, one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation

The Bos-Coster algorithm

- Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
- Idea: Assume $s_{1}>s_{2}>\cdots>s_{n}$. Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
- Each step requires the two largest scalars, one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation
- Typical heap root replacement (pop operation): start at the root, swap down for a variable amount of times

The Bos-Coster algorithm

- Computation of $Q=\sum_{1}^{n} s_{i} P_{i}$
- Idea: Assume $s_{1}>s_{2}>\cdots>s_{n}$. Recursively compute $Q=\left(s_{1}-s_{2}\right) P_{1}+s_{2}\left(P_{1}+P_{2}\right)+s_{3} P_{3} \cdots+s_{n} P_{n}$
- Each step requires the two largest scalars, one scalar subtraction and one point addition
- Each step "eliminates" expected $\log n$ scalar bits
- Requires fast access to the two largest scalars: put scalars into a heap
- Crucial for good performance: fast heap implementation
- Typical heap root replacement (pop operation): start at the root, swap down for a variable amount of times
- Floyd's heap: swap down to the bottom, swap up for a variable amount of times, advantages:
- Each swap-down step needs only one comparison (instead of two)
- Swap-down loop is more friendly to branch predictors
- New fast and secure signature scheme
- (Slow) C and Python reference implementations
- Fast AMD64 assembly implementations
- Also new speed records for Curve25519 ECDH
- All software in the public domain and included in eBATS
- All reported benchmarks (except batch verification) are eBATS benchmarks
- All reported benchmarks had TurboBoost switched off
- Software to be included in the NaCl library
http://ed25519.cr.yp.to/

