
High-speed high-security signatures

Peter Schwabe

National Taiwan University

Joint work with Daniel J. Bernstein, Niels Duif,
Tanja Lange, and Bo-Yin Yang

September 29, 2011

CHES 2011, Nara, Japan

Summary

I Elliptic-curve signature scheme and corresponding software
I Based on arithmetic on twisted Edwards curves

Security features

I 128 bits of security
I Timing-attack resistant implementation
I Foolproof session keys
I Hash-function-collision resilience

Speed features

I Fast signing: 87548 cycles on Intel Nehalem/Westmere
I Fast verification: 273364 cycles
I Even faster batch verification: < 134000 cycles/signature
I Fast key generation: 93288 cycles
I Short signatures (64 bytes), short public keys (32 bytes)

High-speed high-security signatures 2

Summary

I Elliptic-curve signature scheme and corresponding software
I Based on arithmetic on twisted Edwards curves

Security features

I 128 bits of security
I Timing-attack resistant implementation
I Foolproof session keys
I Hash-function-collision resilience

Speed features

I Fast signing: 87548 cycles on Intel Nehalem/Westmere
I Fast verification: 273364 cycles
I Even faster batch verification: < 134000 cycles/signature
I Fast key generation: 93288 cycles
I Short signatures (64 bytes), short public keys (32 bytes)

High-speed high-security signatures 2

Summary

I Elliptic-curve signature scheme and corresponding software
I Based on arithmetic on twisted Edwards curves

Security features

I 128 bits of security
I Timing-attack resistant implementation
I Foolproof session keys
I Hash-function-collision resilience

Speed features

I Fast signing: 87548 cycles on Intel Nehalem/Westmere
I Fast verification: 273364 cycles
I Even faster batch verification: < 134000 cycles/signature
I Fast key generation: 93288 cycles
I Short signatures (64 bytes), short public keys (32 bytes)

High-speed high-security signatures 2

Recall Schnorr signatures

I Variant of ElGamal Signatures
I Many more variants (DSA, ECDSA, KCDSA, . . .)
I Uses finite group G = 〈B〉, with |G| = `

I Uses hash-function H : G× Z→ {0, . . . , 2t − 1}
I Originally: G ≤ F∗

q , here: consider elliptic-curve group

I Private key: a ∈ {1, . . . , `}, public key: A = −aB
I Sign: Generate secret random r ∈ {1, . . . , `}, compute signature

(H(R,M), S) on M with

R = rB

S = (r +H(R,M)a) mod `

I Verifier computes R = SB +H(R,M)A and checks that

H(R,M) = H(R,M)

High-speed high-security signatures 3

Recall Schnorr signatures

I Variant of ElGamal Signatures
I Many more variants (DSA, ECDSA, KCDSA, . . .)
I Uses finite group G = 〈B〉, with |G| = `

I Uses hash-function H : G× Z→ {0, . . . , 2t − 1}
I Originally: G ≤ F∗

q , here: consider elliptic-curve group
I Private key: a ∈ {1, . . . , `}, public key: A = −aB

I Sign: Generate secret random r ∈ {1, . . . , `}, compute signature
(H(R,M), S) on M with

R = rB

S = (r +H(R,M)a) mod `

I Verifier computes R = SB +H(R,M)A and checks that

H(R,M) = H(R,M)

High-speed high-security signatures 3

Recall Schnorr signatures

I Variant of ElGamal Signatures
I Many more variants (DSA, ECDSA, KCDSA, . . .)
I Uses finite group G = 〈B〉, with |G| = `

I Uses hash-function H : G× Z→ {0, . . . , 2t − 1}
I Originally: G ≤ F∗

q , here: consider elliptic-curve group
I Private key: a ∈ {1, . . . , `}, public key: A = −aB
I Sign: Generate secret random r ∈ {1, . . . , `}, compute signature

(H(R,M), S) on M with

R = rB

S = (r +H(R,M)a) mod `

I Verifier computes R = SB +H(R,M)A and checks that

H(R,M) = H(R,M)

High-speed high-security signatures 3

Recall Schnorr signatures

I Variant of ElGamal Signatures
I Many more variants (DSA, ECDSA, KCDSA, . . .)
I Uses finite group G = 〈B〉, with |G| = `

I Uses hash-function H : G× Z→ {0, . . . , 2t − 1}
I Originally: G ≤ F∗

q , here: consider elliptic-curve group
I Private key: a ∈ {1, . . . , `}, public key: A = −aB
I Sign: Generate secret random r ∈ {1, . . . , `}, compute signature

(H(R,M), S) on M with

R = rB

S = (r +H(R,M)a) mod `

I Verifier computes R = SB +H(R,M)A and checks that

H(R,M) = H(R,M)

High-speed high-security signatures 3

EdDSA and Ed25519 parameters

EdDSA
I Integer b ≥ 10

I Prime power q ≡ 1 (mod 4)

I (b− 1)-bit encoding of
elements of Fq

I Hash function H with 2b-bit
output

I Non-square d ∈ Fq

I B ∈ {(x, y) ∈
Fq×Fq,−x2+y2 = 1+dx2y2}
(twisted Edwards curve E)

I prime ` ∈ (2b−4, 2b−3) with
`B = (0, 1)

Ed25519-SHA-512
I b = 256

I q = 2255 − 19 (prime)
I little-endian encoding of
{0, . . . , 2255 − 20}

I H = SHA-512

I d = −121665/121666
I B = (x, 4/5), with x “even”

I ` a 253-bit prime

Ed25519 curve is birationally equivalent to the Curve25519 curve.

High-speed high-security signatures 4

EdDSA and Ed25519 parameters

EdDSA
I Integer b ≥ 10

I Prime power q ≡ 1 (mod 4)

I (b− 1)-bit encoding of
elements of Fq

I Hash function H with 2b-bit
output

I Non-square d ∈ Fq

I B ∈ {(x, y) ∈
Fq×Fq,−x2+y2 = 1+dx2y2}
(twisted Edwards curve E)

I prime ` ∈ (2b−4, 2b−3) with
`B = (0, 1)

Ed25519-SHA-512
I b = 256

I q = 2255 − 19 (prime)
I little-endian encoding of
{0, . . . , 2255 − 20}

I H = SHA-512

I d = −121665/121666
I B = (x, 4/5), with x “even”

I ` a 253-bit prime

Ed25519 curve is birationally equivalent to the Curve25519 curve.

High-speed high-security signatures 4

EdDSA and Ed25519 parameters

EdDSA
I Integer b ≥ 10

I Prime power q ≡ 1 (mod 4)

I (b− 1)-bit encoding of
elements of Fq

I Hash function H with 2b-bit
output

I Non-square d ∈ Fq

I B ∈ {(x, y) ∈
Fq×Fq,−x2+y2 = 1+dx2y2}
(twisted Edwards curve E)

I prime ` ∈ (2b−4, 2b−3) with
`B = (0, 1)

Ed25519-SHA-512
I b = 256

I q = 2255 − 19 (prime)
I little-endian encoding of
{0, . . . , 2255 − 20}

I H = SHA-512

I d = −121665/121666
I B = (x, 4/5), with x “even”

I ` a 253-bit prime

Ed25519 curve is birationally equivalent to the Curve25519 curve.

High-speed high-security signatures 4

EdDSA and Ed25519 parameters

EdDSA
I Integer b ≥ 10

I Prime power q ≡ 1 (mod 4)

I (b− 1)-bit encoding of
elements of Fq

I Hash function H with 2b-bit
output

I Non-square d ∈ Fq

I B ∈ {(x, y) ∈
Fq×Fq,−x2+y2 = 1+dx2y2}
(twisted Edwards curve E)

I prime ` ∈ (2b−4, 2b−3) with
`B = (0, 1)

Ed25519-SHA-512
I b = 256

I q = 2255 − 19 (prime)
I little-endian encoding of
{0, . . . , 2255 − 20}

I H = SHA-512

I d = −121665/121666
I B = (x, 4/5), with x “even”

I ` a 253-bit prime

Ed25519 curve is birationally equivalent to the Curve25519 curve.

High-speed high-security signatures 4

EdDSA and Ed25519 parameters

EdDSA
I Integer b ≥ 10

I Prime power q ≡ 1 (mod 4)

I (b− 1)-bit encoding of
elements of Fq

I Hash function H with 2b-bit
output

I Non-square d ∈ Fq

I B ∈ {(x, y) ∈
Fq×Fq,−x2+y2 = 1+dx2y2}
(twisted Edwards curve E)

I prime ` ∈ (2b−4, 2b−3) with
`B = (0, 1)

Ed25519-SHA-512
I b = 256

I q = 2255 − 19 (prime)
I little-endian encoding of
{0, . . . , 2255 − 20}

I H = SHA-512

I d = −121665/121666
I B = (x, 4/5), with x “even”

I ` a 253-bit prime

Ed25519 curve is birationally equivalent to the Curve25519 curve.

High-speed high-security signatures 4

EdDSA keys

I Secret key: b-bit string k
I Compute H(k) = (h0, . . . , h2b−1)

I Derive integer a = 2b−2 +
∑

3≤i≤b−3 2
ihi

I Note that a is a multiple of 8
I Compute A = aB

I Public key: Encoding A of A = (xA, yA) as yA and one (parity) bit
of xA (needs b bits)

I Compute A from A: xA = ±
√
(y2A − 1)/(dy2A + 1)

High-speed high-security signatures 5

EdDSA keys

I Secret key: b-bit string k
I Compute H(k) = (h0, . . . , h2b−1)

I Derive integer a = 2b−2 +
∑

3≤i≤b−3 2
ihi

I Note that a is a multiple of 8

I Compute A = aB

I Public key: Encoding A of A = (xA, yA) as yA and one (parity) bit
of xA (needs b bits)

I Compute A from A: xA = ±
√
(y2A − 1)/(dy2A + 1)

High-speed high-security signatures 5

EdDSA keys

I Secret key: b-bit string k
I Compute H(k) = (h0, . . . , h2b−1)

I Derive integer a = 2b−2 +
∑

3≤i≤b−3 2
ihi

I Note that a is a multiple of 8
I Compute A = aB

I Public key: Encoding A of A = (xA, yA) as yA and one (parity) bit
of xA (needs b bits)

I Compute A from A: xA = ±
√
(y2A − 1)/(dy2A + 1)

High-speed high-security signatures 5

EdDSA keys

I Secret key: b-bit string k
I Compute H(k) = (h0, . . . , h2b−1)

I Derive integer a = 2b−2 +
∑

3≤i≤b−3 2
ihi

I Note that a is a multiple of 8
I Compute A = aB

I Public key: Encoding A of A = (xA, yA) as yA and one (parity) bit
of xA (needs b bits)

I Compute A from A: xA = ±
√
(y2A − 1)/(dy2A + 1)

High-speed high-security signatures 5

EdDSA signatures

Signing

I Message M determines r = H(hb, . . . , h2b−1,M) ∈ {0, . . . , 22b − 1}
I Define R = rB

I Define S = (r +H(R,A,M)a) mod `

I Signature: (R,S), with S the b-bit little-endian encoding of S
I (R,S) has 2b bits (3 known to be zero)

Veri�cation

I Verifier parses A from A and R from R

I Computes H(R,A,M)

I Checks group equation

8SB = 8R+ 8H(R,A,M)A

I Rejects if parsing fails or equation does not hold

High-speed high-security signatures 6

EdDSA signatures

Signing

I Message M determines r = H(hb, . . . , h2b−1,M) ∈ {0, . . . , 22b − 1}
I Define R = rB

I Define S = (r +H(R,A,M)a) mod `

I Signature: (R,S), with S the b-bit little-endian encoding of S
I (R,S) has 2b bits (3 known to be zero)

Veri�cation

I Verifier parses A from A and R from R

I Computes H(R,A,M)

I Checks group equation

8SB = 8R+ 8H(R,A,M)A

I Rejects if parsing fails or equation does not hold

High-speed high-security signatures 6

Collision resilience

I ECDSA uses H(M)

I Collisions in H allow existential forgery

I Schnorr signatures and EdDSA include R in the hash

I Schnorr: H(R,M)
I EdDSA: H(R,A,M)

I Signatures are hash-function-collision resilient
I Including A alleviates concerns about attacks against multiple keys

High-speed high-security signatures 7

Collision resilience

I ECDSA uses H(M)

I Collisions in H allow existential forgery
I Schnorr signatures and EdDSA include R in the hash

I Schnorr: H(R,M)
I EdDSA: H(R,A,M)

I Signatures are hash-function-collision resilient

I Including A alleviates concerns about attacks against multiple keys

High-speed high-security signatures 7

Collision resilience

I ECDSA uses H(M)

I Collisions in H allow existential forgery
I Schnorr signatures and EdDSA include R in the hash

I Schnorr: H(R,M)
I EdDSA: H(R,A,M)

I Signatures are hash-function-collision resilient
I Including A alleviates concerns about attacks against multiple keys

High-speed high-security signatures 7

Foolproof session keys

I Each message needs a different, hard-to-predict r (“session key”)
I Just knowing a few bits of r for many signatures allows to recover a
I Usual approach (e.g., Schnorr signatures): Choose random r for

each message

I Potential problems: Bad random-number generators,
off-by-one(-byte) bugs

I Even worse: No random-number generator: Sony’s PS3 security
disaster

I EdDSA uses deterministic, pseudo-random session keys
H(hb, . . . , h2b−1,M)

I Same security as random r under standard PRF assumptions
I Does not consume per-message randomness
I Better for testing (deterministic output)

High-speed high-security signatures 8

Foolproof session keys

I Each message needs a different, hard-to-predict r (“session key”)
I Just knowing a few bits of r for many signatures allows to recover a
I Usual approach (e.g., Schnorr signatures): Choose random r for

each message
I Potential problems: Bad random-number generators,

off-by-one(-byte) bugs

I Even worse: No random-number generator: Sony’s PS3 security
disaster

I EdDSA uses deterministic, pseudo-random session keys
H(hb, . . . , h2b−1,M)

I Same security as random r under standard PRF assumptions
I Does not consume per-message randomness
I Better for testing (deterministic output)

High-speed high-security signatures 8

Foolproof session keys

I Each message needs a different, hard-to-predict r (“session key”)
I Just knowing a few bits of r for many signatures allows to recover a
I Usual approach (e.g., Schnorr signatures): Choose random r for

each message
I Potential problems: Bad random-number generators,

off-by-one(-byte) bugs
I Even worse: No random-number generator: Sony’s PS3 security

disaster

I EdDSA uses deterministic, pseudo-random session keys
H(hb, . . . , h2b−1,M)

I Same security as random r under standard PRF assumptions
I Does not consume per-message randomness
I Better for testing (deterministic output)

High-speed high-security signatures 8

Foolproof session keys

I Each message needs a different, hard-to-predict r (“session key”)
I Just knowing a few bits of r for many signatures allows to recover a
I Usual approach (e.g., Schnorr signatures): Choose random r for

each message
I Potential problems: Bad random-number generators,

off-by-one(-byte) bugs
I Even worse: No random-number generator: Sony’s PS3 security

disaster
I EdDSA uses deterministic, pseudo-random session keys
H(hb, . . . , h2b−1,M)

I Same security as random r under standard PRF assumptions
I Does not consume per-message randomness
I Better for testing (deterministic output)

High-speed high-security signatures 8

Foolproof session keys

I Each message needs a different, hard-to-predict r (“session key”)
I Just knowing a few bits of r for many signatures allows to recover a
I Usual approach (e.g., Schnorr signatures): Choose random r for

each message
I Potential problems: Bad random-number generators,

off-by-one(-byte) bugs
I Even worse: No random-number generator: Sony’s PS3 security

disaster
I EdDSA uses deterministic, pseudo-random session keys
H(hb, . . . , h2b−1,M)

I Same security as random r under standard PRF assumptions
I Does not consume per-message randomness
I Better for testing (deterministic output)

High-speed high-security signatures 8

Fast arithmetic in F2255−19

Radix 264

I Standard: break elements of F2255−19 into 4 64-bit integers
I (Schoolbook) multiplication breaks down into 16 64-bit integer

multiplications
I Adding up partial results requires many add-with-carry (adc)
I Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 251

I Instead break into 5 64-bit integers, use radix 251

I Schoolbook multiplication now 25 64-bit integer multiplications
I Partial results have < 128 bits, adding upper part is add, not adc
I Easy to merge multiplication with reduction (multiplies by 19)
I Better performance on Westmere/Nehalem, worse on 65 nm Core 2

and AMD processors

High-speed high-security signatures 9

Fast arithmetic in F2255−19

Radix 264

I Standard: break elements of F2255−19 into 4 64-bit integers
I (Schoolbook) multiplication breaks down into 16 64-bit integer

multiplications
I Adding up partial results requires many add-with-carry (adc)
I Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 251

I Instead break into 5 64-bit integers, use radix 251

I Schoolbook multiplication now 25 64-bit integer multiplications
I Partial results have < 128 bits, adding upper part is add, not adc
I Easy to merge multiplication with reduction (multiplies by 19)
I Better performance on Westmere/Nehalem, worse on 65 nm Core 2

and AMD processors

High-speed high-security signatures 9

Fast signing

I Main computational task: Compute R = rB

I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute R =
∑63

i=0 16
iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I Wait, table lookups?
I In each lookup load all 8 relevant entries from the table, use

arithmetic to obtain the desired one
I Signing takes 87548 cycles on an Intel Westmere CPU
I Key generation takes about 6000 cycles more (read from

/dev/urandom)

High-speed high-security signatures 10

Fast signing

I Main computational task: Compute R = rB

I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute R =
∑63

i=0 16
iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I Wait, table lookups?
I In each lookup load all 8 relevant entries from the table, use

arithmetic to obtain the desired one
I Signing takes 87548 cycles on an Intel Westmere CPU
I Key generation takes about 6000 cycles more (read from

/dev/urandom)

High-speed high-security signatures 10

Fast signing

I Main computational task: Compute R = rB

I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute R =
∑63

i=0 16
iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I Wait, table lookups?
I In each lookup load all 8 relevant entries from the table, use

arithmetic to obtain the desired one
I Signing takes 87548 cycles on an Intel Westmere CPU
I Key generation takes about 6000 cycles more (read from

/dev/urandom)

High-speed high-security signatures 10

Fast signing

I Main computational task: Compute R = rB

I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute R =
∑63

i=0 16
iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I Wait, table lookups?
I In each lookup load all 8 relevant entries from the table, use

arithmetic to obtain the desired one
I Signing takes 87548 cycles on an Intel Westmere CPU
I Key generation takes about 6000 cycles more (read from

/dev/urandom)

High-speed high-security signatures 10

Fast signing

I Main computational task: Compute R = rB

I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute R =
∑63

i=0 16
iriB

I 64 table lookups, 64 conditional point negations, 63 point additions

I Wait, table lookups?
I In each lookup load all 8 relevant entries from the table, use

arithmetic to obtain the desired one
I Signing takes 87548 cycles on an Intel Westmere CPU
I Key generation takes about 6000 cycles more (read from

/dev/urandom)

High-speed high-security signatures 10

Fast signing

I Main computational task: Compute R = rB

I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute R =
∑63

i=0 16
iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I Wait, table lookups?

I In each lookup load all 8 relevant entries from the table, use
arithmetic to obtain the desired one

I Signing takes 87548 cycles on an Intel Westmere CPU
I Key generation takes about 6000 cycles more (read from

/dev/urandom)

High-speed high-security signatures 10

Fast signing

I Main computational task: Compute R = rB

I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute R =
∑63

i=0 16
iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I Wait, table lookups?
I In each lookup load all 8 relevant entries from the table, use

arithmetic to obtain the desired one

I Signing takes 87548 cycles on an Intel Westmere CPU
I Key generation takes about 6000 cycles more (read from

/dev/urandom)

High-speed high-security signatures 10

Fast signing

I Main computational task: Compute R = rB

I First compute r mod `, write it as r0 + 16r1 + · · ·+ 1663r63, with

ri ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}

I Precompute 16i|ri|B for i = 0, . . . , 63 and |ri| ∈ {1, . . . , 8}, in a
lookup table at compile time

I Compute R =
∑63

i=0 16
iriB

I 64 table lookups, 64 conditional point negations, 63 point additions
I Wait, table lookups?
I In each lookup load all 8 relevant entries from the table, use

arithmetic to obtain the desired one
I Signing takes 87548 cycles on an Intel Westmere CPU
I Key generation takes about 6000 cycles more (read from

/dev/urandom)

High-speed high-security signatures 10

Fast veri�cation

I First part: point decompression, compute x coordinate xR of R as

xR = ±
√
(y2R − 1)/(dy2R + 1)

I Looks like a square root and an inversion is required

I As q ≡ 5 (mod 8) for each square α we have α2 = β4, with
β = α(q+3)/8

I Standard: Compute β, conditionally multiply by
√
−1 if β2 = −α

I Decompression has α = u/v, merge square root with inversion:

β = (u/v)(q+3)/8

= u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

I Second part: computation of SB −H(R,A,M)A

I Double-scalar multiplication using signed sliding windows
I Different window sizes for B (compile time) and A (run time)
I Verification takes 273364 cycles

High-speed high-security signatures 11

Fast veri�cation

I First part: point decompression, compute x coordinate xR of R as

xR = ±
√
(y2R − 1)/(dy2R + 1)

I Looks like a square root and an inversion is required
I As q ≡ 5 (mod 8) for each square α we have α2 = β4, with
β = α(q+3)/8

I Standard: Compute β, conditionally multiply by
√
−1 if β2 = −α

I Decompression has α = u/v, merge square root with inversion:

β = (u/v)(q+3)/8

= u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

I Second part: computation of SB −H(R,A,M)A

I Double-scalar multiplication using signed sliding windows
I Different window sizes for B (compile time) and A (run time)
I Verification takes 273364 cycles

High-speed high-security signatures 11

Fast veri�cation

I First part: point decompression, compute x coordinate xR of R as

xR = ±
√
(y2R − 1)/(dy2R + 1)

I Looks like a square root and an inversion is required
I As q ≡ 5 (mod 8) for each square α we have α2 = β4, with
β = α(q+3)/8

I Standard: Compute β, conditionally multiply by
√
−1 if β2 = −α

I Decompression has α = u/v, merge square root with inversion:

β = (u/v)(q+3)/8

= u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

I Second part: computation of SB −H(R,A,M)A

I Double-scalar multiplication using signed sliding windows
I Different window sizes for B (compile time) and A (run time)
I Verification takes 273364 cycles

High-speed high-security signatures 11

Fast veri�cation

I First part: point decompression, compute x coordinate xR of R as

xR = ±
√
(y2R − 1)/(dy2R + 1)

I Looks like a square root and an inversion is required
I As q ≡ 5 (mod 8) for each square α we have α2 = β4, with
β = α(q+3)/8

I Standard: Compute β, conditionally multiply by
√
−1 if β2 = −α

I Decompression has α = u/v, merge square root with inversion:

β = (u/v)(q+3)/8 = u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

I Second part: computation of SB −H(R,A,M)A

I Double-scalar multiplication using signed sliding windows
I Different window sizes for B (compile time) and A (run time)
I Verification takes 273364 cycles

High-speed high-security signatures 11

Fast veri�cation

I First part: point decompression, compute x coordinate xR of R as

xR = ±
√
(y2R − 1)/(dy2R + 1)

I Looks like a square root and an inversion is required
I As q ≡ 5 (mod 8) for each square α we have α2 = β4, with
β = α(q+3)/8

I Standard: Compute β, conditionally multiply by
√
−1 if β2 = −α

I Decompression has α = u/v, merge square root with inversion:

β = (u/v)(q+3)/8 = u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

I Second part: computation of SB −H(R,A,M)A

I Double-scalar multiplication using signed sliding windows
I Different window sizes for B (compile time) and A (run time)

I Verification takes 273364 cycles

High-speed high-security signatures 11

Fast veri�cation

I First part: point decompression, compute x coordinate xR of R as

xR = ±
√
(y2R − 1)/(dy2R + 1)

I Looks like a square root and an inversion is required
I As q ≡ 5 (mod 8) for each square α we have α2 = β4, with
β = α(q+3)/8

I Standard: Compute β, conditionally multiply by
√
−1 if β2 = −α

I Decompression has α = u/v, merge square root with inversion:

β = (u/v)(q+3)/8 = u(q+3)/8vq−1−(q+3)/8

= u(q+3)/8v(7q−11)/8 = uv3(uv7)(q−5)/8.

I Second part: computation of SB −H(R,A,M)A

I Double-scalar multiplication using signed sliding windows
I Different window sizes for B (compile time) and A (run time)
I Verification takes 273364 cycles

High-speed high-security signatures 11

Faster batch veri�cation

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = H(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication
I Verifying a batch of 64 signatures takes 8.55 million cycles (i.e.,
< 134000 cycles/signature)

High-speed high-security signatures 12

Faster batch veri�cation

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = H(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication
I Verifying a batch of 64 signatures takes 8.55 million cycles (i.e.,
< 134000 cycles/signature)

High-speed high-security signatures 12

Faster batch veri�cation

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = H(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication
I Verifying a batch of 64 signatures takes 8.55 million cycles (i.e.,
< 134000 cycles/signature)

High-speed high-security signatures 12

Faster batch veri�cation

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = H(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication

I Verifying a batch of 64 signatures takes 8.55 million cycles (i.e.,
< 134000 cycles/signature)

High-speed high-security signatures 12

Faster batch veri�cation

I Verify a batch of (Mi, Ai, Ri, Si), where (Ri, Si) is the alleged
signature of Mi under key Ai

I Choose independent uniform random 128-bit integers zi
I Compute Hi = H(Ri, Ai,Mi)

I Verify the equation(
−
∑
i

ziSi mod `

)
B +

∑
i

ziRi +
∑
i

(ziHi mod `)Ai = 0

I Use Bos-Coster algorithm for multi-scalar multiplication
I Verifying a batch of 64 signatures takes 8.55 million cycles (i.e.,
< 134000 cycles/signature)

High-speed high-security signatures 12

The Bos-Coster algorithm

I Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation
I Typical heap root replacement (pop operation): start at the root,

swap down for a variable amount of times
I Floyd’s heap: swap down to the bottom, swap up for a variable

amount of times, advantages:
I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

High-speed high-security signatures 13

The Bos-Coster algorithm

I Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits

I Requires fast access to the two largest scalars: put scalars into a
heap

I Crucial for good performance: fast heap implementation
I Typical heap root replacement (pop operation): start at the root,

swap down for a variable amount of times
I Floyd’s heap: swap down to the bottom, swap up for a variable

amount of times, advantages:
I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

High-speed high-security signatures 13

The Bos-Coster algorithm

I Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation

I Typical heap root replacement (pop operation): start at the root,
swap down for a variable amount of times

I Floyd’s heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

High-speed high-security signatures 13

The Bos-Coster algorithm

I Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation
I Typical heap root replacement (pop operation): start at the root,

swap down for a variable amount of times

I Floyd’s heap: swap down to the bottom, swap up for a variable
amount of times, advantages:

I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

High-speed high-security signatures 13

The Bos-Coster algorithm

I Computation of Q =
∑n

1 siPi

I Idea: Assume s1 > s2 > · · · > sn. Recursively compute
Q = (s1 − s2)P1 + s2(P1 + P2) + s3P3 · · ·+ snPn

I Each step requires the two largest scalars, one scalar subtraction and
one point addition

I Each step “eliminates” expected log n scalar bits
I Requires fast access to the two largest scalars: put scalars into a

heap
I Crucial for good performance: fast heap implementation
I Typical heap root replacement (pop operation): start at the root,

swap down for a variable amount of times
I Floyd’s heap: swap down to the bottom, swap up for a variable

amount of times, advantages:
I Each swap-down step needs only one comparison (instead of two)
I Swap-down loop is more friendly to branch predictors

High-speed high-security signatures 13

Results

I New fast and secure signature scheme
I (Slow) C and Python reference implementations
I Fast AMD64 assembly implementations
I Also new speed records for Curve25519 ECDH
I All software in the public domain and included in eBATS
I All reported benchmarks (except batch verification) are eBATS

benchmarks
I All reported benchmarks had TurboBoost switched off
I Software to be included in the NaCl library

http://ed25519.cr.yp.to/

High-speed high-security signatures 14

http://ed25519.cr.yp.to/

